scinces optics
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.

scinces optics

يهتم بكل ماهو جديد في علوم الإبصار وانواعه
 
الرئيسيةالبوابةأحدث الصورالتسجيلدخول

 

 ميكانيك لاغرانج

اذهب الى الأسفل 
كاتب الموضوعرسالة
محمود السرساوي
Admin



المساهمات : 139
تاريخ التسجيل : 11/05/2008
العمر : 38
الموقع : https://m-optics.yoo7.com

ميكانيك لاغرانج Empty
مُساهمةموضوع: ميكانيك لاغرانج   ميكانيك لاغرانج I_icon_minitimeالجمعة مايو 23, 2008 10:21 am

ميكانيك لاغرانج Lagrangian mechanics عبارة عن إعادة صياغة للمكيانيك الكلاسيكي قدمه جوزيف لويس لاغرانج عام 1788. في ميكانيك لاغرانج ، مسار الجسم يشتق بإيجاد المسلك الذي يقلل الفعل action ، و هو مقدار يعتبر تكامل لكمية ندعوها لاغرانجي Lagrangian على الزمن . اللاغرانجي بالنسبة للميكانيك الكلاسيكي يعتبر الفرق بين الطاقة الحركية و الطاقة الكامنة .

هذا الموضوع يبسط بصورة كبيرة الكثير من المسائل الفيزيائية . مثلا كرة صغيرة في حلقة . إذا قمنا بالحساب على أساس الميكانيك النيوتني ، سيحصل المرء على مجموعة معقدة من المعادلات التي ستأخذ بعين الاعتبار القوى التي تؤثر بها الدوامة على الكرية في كل لحظة .

نفس هذه المسألة تصبح أسها باستخدام ميكانيك لاغرانج . حيث ينظر المرء إلى جميع الحركات الممكنة التي تقوم بها الكرية على الدوامة و يجد رياضيا الحركة التي تقلل الفعل إلى ادنى حد . بالتالي يكون لدينا عدد أقل من المعادلات لأنها لا تمثل حسابا مباشرا لتأثير الدوامة على الكرية عند كل لحظة .


[تحرير] معادلات لاغرانج
لنعتبر جسيما مفردا ذو كتلة m و شعاع موضع r . تطبق عليه قوة F ، يمكن عندئذ أن نعبر عن هذه القوة على أنها تدرج تابع الطاقة الكامنة القياسي (V(r, t:


مثل هذه القوة تكون مستقلة عن المشتق الثالث أو المشتقات الأعلى رتبة لشعاع الموضع r ، لذا فإن هذه قانون نيوتن الثاني يشكل مجموعة من ثلاث معادلات تفاضلية نظامية من الرتبة الثانية .

لذا فإن حركة هذا الجسيم يمكن وصفها بدلالة متغيرات مستقلة أو ما يدعى " درجات حرية " . درجات الحرية هذه هي مجموعمة من ستة متغيرات :

{ rj, r′j | j = 1, 2, 3},

المركبات الديكارتية لشعاع الموضع r و مشتقاته الزمنية ( مشتقاته بالنسبة للزمن ), في لحظة زمنية معينة أي أن الموضع (x,y,z) و السرعة بمكوناتها الديكارتية الثلاثة :

((vx,vy,vz ) ).

بشكل أعم ، يمكننا العمل ضمن جملة إحداثيات معممة

, qj, مع مشتقاتها الزمنية ، أو ما يدعى بالسرع معممة ، q′j.

يرتبط شعاع الموضع r مع الإحداثيات المعممة عن طريق جملة معادلات تحويل

خطأ رياضيات (خطأ في الصيغة): \mathbf{r} = \mathbf{r}(q_i ، q_j ، q_k, t).

فمثلا من أجل نواس بسيط ذو طول l ، يكون الخيار المنطقي للإحداثيات المعممة هو زاوية النواس التي يصنعها مع خطه الشاقولي ( العمودي ) ، θ,

و تكون معادلات التحويل :

.
مصطلح إحداثيات معممة أحد بقايا فترة استخدام الإحداثيات الديكارتية كنظام إحداثيات افتراضي .


لنعتبر الإزاحة الإعتبارية للجسم δr فيكون العمل المنجز من قبل القوة F هو :

δW = F · δr.

باستخدام قانون نيوتن الثاني يمكننا أن نكتب :


بما أن العمل كمية فيزيائية قياسية ( كمية و ليست شعاعية ) يمكننا إعادة كتابة هذه المعادلات بدلالة الإحداثيات المعممة و السرع على الجانب الأيسر .





عملية تنسيق الجانب الأيمن أكثر صعوبة لكن بعد الترتيب و التبديل :


حيث هي الطاقة الحركية للجسيم T = 1/2 m r′ 2 . و معادلة العمل المنجز ستصبح بالشكل :





على أي حال ، فإن هذا يجب أن يكون صحيحا بالنسبة لأي مجموعة من الإزاحات المعممة δqi, لذا يكون لدينا :





من أجل أي من الإحداثيات المعممة δqi.

يمكننا أن نبسط هذه المعادلة بملاحظة V أن هو تابع ل r و t, و شعاع الموضع r تابع أيضا للإحداثيات المعممة و الزمن t لذا فإن الطاقة الكامنة V تكون مستقلة عن السرع المعممة





بإدخال هذا في المعادلة السابقة و استبدال L = T - V نحصل على معادلات لاغرانج :



هناك دوما معادلة لاغرانج وحيدة لكل إحداثي معمم qi. و عندما يكون qi = ri (أي أن الإحداثيات المعممة هي ببساطة إحداثيات ديكارتية ), عندئذ نستطيع بسهولة اختزال معادلة لاغرانج إلى قانون نيوتن الثاني.

الاشتقاق أعلاه يمكن تعميمه على نظام (جملة) مؤلفة من N جسيم. عندئذ يكون هناك 6N إحداثي معمم يرتبطان بإحداثيات الموضع عن طريق معادلات التحويل الثلاثية 3N . في معادلات لاغرانج 3N يكون دوما T هو الطاقة الحركية الكلية للجملة ، و V الطاقة الكامنة الكلية .

عمليا من الأسهل حل المسألة ياستخدام معادلة اويلر-لاغرانج بدلا من قوانين نيوتن . ذلك لأن الإحداثيات المعممة qi يمكن اختيارها لتلائم تناظرات النظام
الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://m-optics.yoo7.com
 
ميكانيك لاغرانج
الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1
 مواضيع مماثلة
-

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
scinces optics :: علوم البصريات :: الفيزياء البصريات-
انتقل الى: